Ultrasound-Guided Breast Biopsy

This procedure is reviewed by a physician with expertise in the area presented and is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise in several radiologic areas.

What is Ultrasound-Guided Breast Biopsy?

Lumps or abnormalities in the breast are often detected by physical examination, mammography, or other imaging studies. However, it is not always possible to tell from these imaging tests whether a growth is benign or cancerous.

A breast biopsy is performed to remove some cells—either surgically or through a less invasive procedure involving a hollow needle—from a suspicious area in the breast and examine them under a microscope to determine a diagnosis. During a breast biopsy, part or all of a tumor may be removed.

Image-guided biopsy is performed when the abnormal area in the breast is too small to be felt, making it difficult to locate the lesion by hand (called palpation).

In ultrasound-guided breast biopsy, ultrasound imaging is used to help guide the interventional radiologist’s instruments to the site of the abnormal growth.

What are some common uses of the procedure?

An ultrasound-guided breast biopsy can be performed when a breast ultrasound shows an abnormality such as:

- a suspicious solid mass
- microcalcifications, a tiny cluster of small calcium deposits
- a distortion in the structure of the breast tissue
- an area of abnormal tissue change
- a new mass or area of calcium deposits is present at a previous surgery site.

There are times when your doctor may decide that ultrasound guidance for biopsy is appropriate even for a mass that can be felt.

Ultrasound guidance is used in four biopsy procedures:

- fine needle aspiration (FNA), which uses a very small needle to extract cells from the abnormal area.
- core needle (CN) which uses a large hollow needle to remove one sample of breast tissue per insertion.
- vacuum-assisted device (VAD) which uses a vacuum powered instrument to collect multiple tissue samples during one needle insertion.
- wire localization, in which a guide wire is placed into the suspicious area to help the surgeon locate the lesion during surgical biopsy.

How should I prepare?

You should wear comfortable, loose-fitting clothing for your ultrasound exam. You will need to remove all clothing and jewelry in the area to be examined.

You may be asked to wear a gown during the procedure.

Prior to a needle biopsy, you should report to your doctor all medications that you are taking, including herbal supplements, and if you have any allergies, especially to anesthesia. Your physician may advise you to stop taking aspirin or a blood thinner three days before your procedure.

Also, inform your doctor about recent illnesses or other medical conditions.

You may want to have a relative or friend accompany you and drive you home afterward. This is recommended if you have been sedated.
What does the equipment look like?

Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a transducer that is used to scan the body. The transducer is a small hand-held device that resembles a microphone, attached to the scanner by a cord. The transducer sends out a high frequency sound wave and then listens for a returning sound wave or “echo.”

The ultrasound image is immediately visible on a nearby screen that looks much like a computer or television monitor. The image is created based on the amplitude (strength), frequency and time it takes for the sound signal to return from the patient to the transducer.

One of four instruments will be used:

- A fine needle attached to a syringe, smaller than needles typically used to draw blood.
- A core needle, also called an automatic, spring-loaded needle, which consists of an inner needle connected to a trough, or shallow receptacle, covered by a sheath and attached to a spring-loaded mechanism.
- A vacuum-assisted device (VAD), a vacuum powered instrument that uses pressure to pull tissue into the needle.
- A thin guide wire, which is used for a surgical biopsy.

Other sterile equipment involved in this procedure includes syringes, sponges, forceps, scalpels and a specimen cup or microscope slide.

How is it performed?

Image-guided, minimally invasive procedures such as ultrasound-guided breast biopsy are most often performed by a specially trained interventional radiologist.

Breast biopsies are usually done on an outpatient basis.

You will be positioned on lying face up on the examination table or turned slightly to the side.

A local anesthetic will be injected into the breast to numb it.

Pressing the transducer to the breast, the sonographer or radiologist will locate the lesion.

A very small nick is made in the skin at the site where the biopsy needle is to be inserted.

The physician, constantly monitoring the lesion site with the ultrasound probe, will insert the needle and advance it directly into the mass.

Tissue samples will then be removed using one of three methods.

- In a fine needle aspiration, a fine gauge needle and a syringe withdraws fluid or clusters of cells.
- In a core needle biopsy, the automated mechanism is activated, moving the needle forward and filling the needle trough, or shallow receptacle, with ‘cores’ of breast tissue. The outer sheath instantly moves forward to cut the tissue and keep it in the trough. This process is repeated three to six times.
• With a vacuum-assisted device (VAD), vacuum pressure is used to pull tissue from the breast through the needle into the sampling chamber. Without withdrawing and reinserting the needle, it rotates positions and collects additional samples. Typically, eight to 10 samples of tissue are collected from around the lesion.

If a surgical biopsy is being performed, a wire is inserted into the suspicious area as a guide for the surgeon.

After the sampling, the needle will be removed.

A small marker may be placed at the site so that it can be located in the future if necessary.

Once the biopsy is complete, pressure will be applied to stop any bleeding and the opening in the skin is covered with a dressing. No sutures are needed.

A mammogram may be performed to confirm that the marker is in the proper position.

This procedure is usually completed within an hour.

What will I experience during and after the procedure?

You will be awake during your biopsy and should have little or no discomfort. Most women report little or no pain and no scarring on the breast.

When you receive the local anesthetic to numb the skin, you will feel a slight pin prick from the needle. You may feel some pressure when the biopsy needle is inserted.

The area will become numb within a short time.

You must remain still while the biopsy is performed.

As tissue samples are taken, you may hear clicks from the sampling instrument.

If you experience swelling and bruising following your biopsy, you may be instructed to take an over-the-counter pain reliever and to use a cold pack. Temporary bruising is normal.

You should contact your physician if you experience excessive swelling, bleeding, drainage, redness or heat in the breast.

If a marker is left inside the breast to mark the location of a lesion completed removed during biopsy, it will cause no pain, disfigurement or harm.

You should avoid strenuous activity for 24 hours after returning home, but then usually will be able to resume normal activities.

Who interprets the results and how do I get them?

A pathologist examines the removed specimen and makes a final diagnosis. Depending on the facility, the radiologist or your referring physician will share the results with you.

What are the benefits vs. risks?

Benefits
• The procedure is less invasive than surgical biopsy, leaves little or no scarring and can be performed in less than an hour.
• Ultrasound imaging uses no ionizing radiation.
• Ultrasound-guided breast biopsy reliably provides tissue samples that can show whether a breast lump is benign or malignant.
• The use of a vacuum-assisted device may make it possible to remove the entire lesion.
• Compared with stereotactic breast biopsy, the ultrasound method is faster and avoids the need for ionizing radiation exposure.
• With ultrasound it is possible to follow the motion of the biopsy needle as it moves through the breast tissue.
• Ultrasound-guided breast biopsy is able to evaluate lumps under the arm or near the chest wall, which are hard to assess with stereotactic biopsy.
• Ultrasound-guided biopsy is less expensive than stereotactic biopsy.
• Recovery time is brief and patients can soon resume their usual activities.

Risks
• Because the vacuum-assisted device removes large pieces of tissue, there is a risk of bleeding and forming a hematoma, or a collection of blood at the biopsy site. The risk, however, appears to be less than 1 percent of patients.
• An occasional patient has significant discomfort, which can be readily controlled by non-prescription pain medication.
• Any procedure where the skin is penetrated carries a risk of infection. The chance of infection requiring antibiotic treatment appears to be less than one in 1,000.
• Doing a biopsy of tissue located deep within the breast carries a slight risk that the needle will pass through the chest wall, allowing air around the lung that could collapse a lung. This is a rare occurrence.

What are the limitations of Ultrasound-Guided Breast Biopsy?

Breast biopsy procedures will occasionally miss a lesion or underestimate the extent of disease present. If the diagnosis remains uncertain after a technically successful procedure, surgical biopsy will be necessary.

The ultrasound-guided biopsy method cannot be used unless the mass can be seen on an ultrasound exam. Calcifications within a cancerous nodule are not shown as clearly with ultrasound as with x-rays.

Small lesions may be difficult to target accurately by ultrasound-guided core biopsy.

Disclaimer:

This information is copied from the RadiologyInfo Web site (http://www.radiologyinfo.org) which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas.

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided "as is" without express or implied warranty.

Please visit the RadiologyInfo Web site at http://www.radiologyinfo.org to view or download the latest information.

Copyright © 2008 Radiological Society of North America, Inc. Send comments via email to: webmast2@rsna.org